SAULT COLLEGE OF APPLIED ARTS ic TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE milLUIE

CALCULUS
COURSE TITLE:
MTH551-4

MECHANICAL/ELECTRICAL/ELECTRONICS/COMPUTER
TECHNOLOGY PROGRAM:

AUTHOR:

DATE:
SEPTEMBER 1994 FEB. 1994
JOHN REAL
\qquad PREVIOUS OUTLINE DATED: \qquad

APPROVED:

CALCULUS
:OURSE NAME
MTH551-4

TOTAL CREDIT HOURS: 64
PREREQUISITE(S): MTH 143

SUBSTITUTE(S): NONE

I. PHILOSOPHY/GOALS:

The basic concepts of calculus are introduced through an emphasis on applications and examples. Topics include limits, simple derivatives, derivatives of trigonometric and logarithmic functions, applications of derivatives, curve sketching, integration, and applications of integration.

II. STUDENT PERFORMANCE OBJECTIVES:

The basic objectives are that the student develop an understanding of the methods studied, demonstrate a knowledge of the facts presented and show an ability to use these in the solution of problems. To accomplish these objectives, exercises are assigned. Test questions will be of near equal difficulty to questions assigned in the exercises. The level of competency demanded is the level required to obtain an overall passing average on the tests. The material to be covered is listed below.
II. TOPICS TO BE COVERED:

The Derivative. 15 periods
2. Applications of the Derivative.
3. Integration.
4. Applications of Integration.
5. Differentiation of Transcendental Functions.

15 periods
10 periods
10 periods

14 periods

- F OURSE NAME

COURSE NUMBER

IV. TERMINAL PERFORMANCE OBJECTIVES - MTH551

Topic 1:

1. Evaluate limits of algebraic functions.
2. Approximate the slope of a tangent to a curve.
3. Find the derivative of an algebraic function using the delta method.
4. Find instantaneous rates of change of a function using derivatives.
5. Find the derivative of a polynomial using a rule.
6. Find derivatives of other algebraic functions (products and quotients] using rules for differentiation.
7. Find the derivative of a power of a function - Chain rule.
8. Find the derivative of an implicit function.
9. Find higher derivatives of algebraic functions.

Topic 2:

1. Find slopes and equations of tangent and normal lines.
2. Compute velocities and accelerations for curvilinear motion.
3. Solve related rate problems.
4. Make graphs of non-linear functions using derivatives.
5. Make graphs of discontinuous functions using derivatives, asymptotes, intercepts.
6. Solve applied maximum-minimum problems.

Topic 3;

${ }^{\wedge} 1$. Use differentials to compute small changes in a function.
Find an antiderivative using derivative rules.
3. Use the basic rule for integration of algebraic functions.
4. Determine approximate areas under curves from graphs.
5. Determine exact areas under curves by integration - the fundamental theorem of integral calculus.
6. Evaluate other algebraic definite integrals.

Topic 4:

1. Solve problems involving distance-velocity-acceleration, current-voltage-charge using integration.
2. Find areas (between two curves) using horizontal and vertical elements and definite integrals.
3. Find the volume of a solid of revolution using the disk^ r shell method.

Topic 5:

1. Find derivatives of expressions containing sine or cosine functions.
2. Find derivatives of other trigonometric functions.
3. Find derivatives of inverse trigonometric functions.
4. Solve worded problems which involve trigonometric functions.
5. Find derivatives of logarithmic functions - any constant base.
6. Find derivatives of exponential functions - any constant base.
7. Solve worded problems involving logarithmic of exponential functions.

CALCULUS

COURSE NAME

COURSE NUMBER
LEARNING ACTIVITIES:
1.1 Limits.
1.2 The slope of a tangent to a curve.
1.3 The derivative.
1.4 The meaning of the derivative.
1.5 Derivatives of polynomials.

1.6 Derivatives of products and quotients of functions.

1.7 The derivative of a power of a function.

Differentiation of implicit functions. Questions 1-32, P- 684
1.9 Higher derivatives.
1.10 Review exercise
2.0 Applications of the Derivative
2.1 Tangents and normals.
2.2 Curvilinear motion.
2.3 Related rates.
2.4 Using derivatives in curve sketching.
2.5 More on curves.
2.6 Applied maximum and minimum problems.
2.7 Review exercise.
3.0 integration
3.1 Differentials
3.2 Antiderivatives

Chapter 22
Questions 1-44, P- 649
Questions 1-24, p. 655

Questions 1-32, p. 660
Questions 1-32, P-664

Questions 1-44, P-669
Questions 1-44, p. 674

Questions 1-44, p. 680

Questions 1-36, P- 688
Questions 1-68, P- 689
Chapter 23

Questions 1-24, P- 696
Questions 1-24. P- 705
Questions 1-24, P-709
Questions 1-32, P. 716

Questions 1-18. p. 720
Questions 1-32, P-727

Questions 1-48, p. 728
Chapter 24
Questions 1-32, p. 735
Questions 1-32, p. 738

CALCULUS
^OURSE NAME
V. LEARNING ACTIVITiES:(contd)

Integration (contd)
3.3 The indefinite integral
3.4 The area under a curve
3.5 The definite integral
3.6 Review exercise
4.0 Application of Integration
4.1 Applications of the indefinite integral
4.2 Areas by integration
4.3 Volumes by integration
4.4 Review Exercise
-0 Differentiation of Transcendental Functions
5.1 Derivatives of sine and cosine functions
5.2 Derivatives of other trigonometric functions
5.3 Derivatives of inverse trigonometric functions
5.4 Applications
5.5 Derivatives of logarithmic functions
5.6 Derivatives of exponential functions
5.7 Applications
5.8 Review

MTH551-4

COURSE NUMBER

REQUIRED RESOURCES

Questions 1-44, p. 744
Questions 1-16, p. 750
Questions 1-36, p. 753
Questions 1-36, p. 761 45-32

Chapter 25
Questions 1-20, 23, p. 769

Questions 1-27, p. 775
Questions 1-26, p. 782
Questions 1-22, p. 802
Chapter 26

Questions 1-50, p. 809

Questions 1-46, p. 813

Questions 1-41, p. 817

Questions 1-8, 11-16, p. 821
Questions 1-48, p. 826

Questions 1-48, p. 829

Questions 1-32, p. 833
Questions 1-50, p. 835

COURSE NUMBER

VI. METHOD OF EVALUATION:

1. Three - four tests per semester.
2. Final grade is a weighted average of these tests.

$$
\begin{aligned}
90-100 & =A+ \\
80-89 & =A \\
65-79 & =B \\
55-64 & =C \\
0-54 & =R(\text { or } X)
\end{aligned}
$$

Under special circumstances an X grade may be assigned to allow the student to continue with the next math, course. If unsuccessful with this next course, both courses would have to be repeated.

All tests are scheduled in advance. Hence, attendance is mandatory. Unexcused absence from a test will result is a mark of zero for that test. If a student is prevented from writing a test by illness, the instructor should be notified before the time of the test. Upon return to class, the student should see the instructor immediately to arrange a time for a make-up test. The student should have a note from the college nurse or a doctor.

H^W. REQUIRED STUDENT RESOURCES:

1. Text: Washington, Basic Technical Mathematics With Calculus, fifth edition, metric version. Benjamin/Cummings Pub. Co. 1990
2. Calculator: (RecommendedO Sharp Scientific calculator EL-531G.

Note: Most scientific calculators are acceptable. However, programmable calculators and graphical display calculators may be prohibited during tests.

VII. SPECIAL NOTES:

Students with special needs (e.g. physical limitations, visual impairments, hearing impairments, learning disabilities) are encouraged to discuss required accommodations confidentially with the instructor.

Your instructor reserves the right to modify the course as he/she deems necessary to meet the needs of students.

